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Abstract. Modern monitoring and supervising systems track sev-
eral of the potential system discrete and continuous (hybrid) states in
parallel. This results in a difficulty to act when a system is diagnosed
to be faulty while its state is not uniquely determined. Another con-
sequence is that the functionalities that have been lost by the system
are undetermined and cannot be efficiently restored. We propose to
extract the functional deficiencies from a nominal prediction of the
system expected states and the belief state that results from the diag-
nosis operation. We give a characterization of the deficiencies whose
size is minimal, while deficient over the largest number of state esti-
mates. Interestingly, functional deficiencies do not overlap. We then
identify the reconfiguration goals by making use of a conditioned
causal representation of the system equations.

1 Introduction

Model-based autonomous systems already face faulty situations with
some success: they detect and diagnose faults by either identifying
potential candidates for their own physical state [8] or reasoning on
their structural and behavioral knowledge [6]. The next step toward
more autonomy is to have the system recovering itself after faults oc-
cur, a process known as model-based reconfiguration3 (MBReconf).
Automated reconfiguration comprehends three steps: goal identifica-
tion, goal selection, recovery. Goal identification searches for a set
of potential states of the system in which the fault is inhibited; goal
selection is the process of deciding the best of these states, denoted
goal states; recovery searches for the chain of actions that may turn
the physical system state into the desired goal states. Due to several
factors, MBReconf is a challenging problem:

• The state of the system cannot be uniquely determined in all sit-
uations. Recent model-based monitoring/diagnosis systems track
several potential non-faulty/faulty state estimates simultaneously
[12, 8, 9, 2].

• Fault effects may differ from one state estimate to the other. For
this reason, pre-compiled policies may fail recovering the system
by triggering an improper command when the state is uncertain.

• Nowadays, embedded digitally controlled systems have complex
behaviors characterized by a preeminence of discrete switches in
their dynamics. Due to potential automated switches, there exists
no trivial mapping from faults to reconfiguration goal states.
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A fault alters some variables of the system state so some function-
alities do not appear to be achieved anymore. Thus, a stuck closed
valve in a propulsion system loses the thrust functionality. A resistor
parameter change alters a thermostat’s heating functionality. Here a
functionality of the system is described as a conjunction of variable
instances. The uncertainty over the system state precludes an easy
identification of the functional deficiencies. Referring to the faulty
states as the estimates that result from the diagnosis operation, as
opposed to the nominally predicted states, we propose to proceed to
a comparison to determine the functional deficiencies caused by the
faults. In this context, functional deficiencies are variable instances in
one or more predicted states that have been lost in one or more faulty
states. Our approach aims at minimizing the size of a deficiency to
recover while maximizing its coverage of the state estimates.

Then, due to the absence of a bijective mapping between the sys-
tem modes and continuous regions of behavior, it is difficult to iden-
tify potential reconfiguration goals based on the functional deficien-
cies. A solution is to call for reachability analysis [3] to find the sys-
tem states where functional deficiencies are restored. Unfortunately
this time analysis is much too computationally expensive to be inte-
grated into the model-based diagnosis and reconfiguration loop. In-
stead we propose a methodology based on a conditional causal rep-
resentation of the state equations, thus abstracting the time away. Re-
configuration then becomes the problem of determining conditions
that are sufficient to overcome a functional deficiency. This process is
similar to the model-based diagnosis consistency approach [5]. Sec-
tion 2 details the hybrid framework; section 3 defines and character-
izes the functional deficiencies; section 4 identifies the reconfigura-
tion goals.

2 Hybrid Model-Based State Prediction and
Diagnosis

In this section we introduce a comprehensive formalization of model,
state and uncertainty. The autonomous system is considered a model-
based system, i.e. that has a structural and behavioral knowledge of
itself.

Definition 1 (Model-Based System). A model-based system A is a
tuple (C,M, T ,X , E), where C is a set of modeled components, M
a set of finite discrete variables as component behavioral modes, T
a set of transitions among these modes, X the set of continuous vari-
ables partitionned in state variables XX , output (observed) variables
XY and input variables (commands) XU . E is a set of continuous
static/differential equations over X .

The physical system state description is hybrid: the hybrid state s
is the tuple (M, X). Instances of variables v in M ∪ X are noted
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P1 = Patm
P2 = Patm

Figure 1. Pressure expansion system

(v = vj), or vj for short. The hybrid state’s discrete side abstracts
the physical system as a set of mode instances M =

V
k Ck.mik

where Ck.mik is an instance of a variable m ∈ M of component
Ck ∈ C. The continuous state X is made of instances xj of contin-
uous variables of XX . Observed variables of XY are noted y (vec-
tor Y ), and ỹ (vector Ỹ ) denotes the measured value. Commands
are noted u (vector U ). System A’s behavior is described with rules
of the form (

V
i ei if φ), where ei ∈ E and φ is a conjunction of

equalities/inequalities over functions of variables in M ∪ X . A set
T = {τ1, · · · , τnm} of transitions is specified for each mode m.
Each transition τ is enabled according to a guard φ, and may trig-
ger with probability p(τ ) whenever the guard is satisfied. T (si, sj)
denotes the set of transitions that moves A from si to sj .
We note P(A) the prediction of the system’s nominal state, and
D(A) the diagnosis result after a fault occurs. We denote S =`
P(A),D(A)

´
.

Example (Pressure expansion system). Figure 1 pictures our case
study: a two valves system that limits water pressure between flow
input Q0 and flow output Q. An electric switch S powers valve V2

when pressure P0 equals or exceeds threshold P∗. V2 opens when
powered. S, V1 and V2 have two nominal operational modes open
and closed, and two faulty modes stuck closed, stuck open. Q0 and
Q are measured. P0 ≥ Patm is the uncertain input to the system.
Patm denotes the atmospheric pressure.

Our scenario assumes faults occur when the prediction of the nominal
state is uncertain4, i.e. the uncertainty on the pressure does not allow

4 This corresponds to the general case of tracking multiple states simultane-
ously.

to discriminate between two predicted states in P(A)5:

s1
N :

8><
>:

Q0 > 0, P0 < P∗
V1.m = open
S.m = open

V2.m = closed
Q1 > 0, Q2 = 0, Q > 0

and s2
N :

8><
>:

Q0 > 0, P0 ≥ P∗
V1.m = open
S.m = closed
V2.m = open

Q1 > 0, Q2 > 0, Q > 0

After observing Q0 > 0 ∧ Q = 0, based on the knowledge of the
nominal states above, D(A) is:

s1
F :

8>><
>>:

Q0 > 0, P0 < P∗
V1.m = stuck closed

S.m = open
V2.m = closed

Q1 = 0, Q2 = 0, Q = 0

, s2
F :

8>><
>>:

Q0 > 0, P0 ≥ P∗
V1.m = stuck closed

S.m = closed
V2.m = stuck closed
Q1 = 0, Q2 = 0, Q = 0

and s3
F :

8>><
>>:

Q0 > 0, P0 ≥ P∗
V1.m = stuck closed
S.m = stuck open

V2.m = closed
Q1 = 0, Q2 = 0, Q = 0

s1
F is the faulty state diagnosed from s1

N while s2
F and s3

F have been
deduced from s2

N . Hybrid states in P(A) = (s1
N , s2

N ) and D(A) =
(s1

F , s2
F , s3

F ) contain enough information for extracting the system’s
functional deficiencies.

3 Functional Deficiencies

Variable deficiencies affect the functionalities of the system, i.e. roles
it has to accomplish, some being lost or degraded. Functionalities
have no precise characterization besides those given by the engineers.
In our case, we consider such characterizations are not specified in
the system model. Our first objective is to make lost functionalities
apparent given the set of potential faults.

Given a belief on a model-based system A, we extend
P(A) and D(A) by the states probabilities such that P(A) =
((s1

N , p(s1
N)), · · · , (sn

N , p(sn
N))) is the set of the n nominally pre-

dicted states, and their associated probabilities, and D(A) =
((s1

F , p(s1
F )), · · · , (sf

F , p(sf
F ))) the set of f faulty states from di-

agnosis, and their attached probabilities. Given a variable v, we note
s(v) its value in state s. Any set of nominal and faulty states in S is
denoted a reconfiguration set.

We want to find sets Fi of variable instances in M ∪ X that char-
acterize the differences between states in P(A) and D(A). We show
that the minimal functionalities that cover the maximum number of
state estimates are a group of non-intersecting Fi. The general idea
that is developed in this section has been inspired by the model-based
reconfiguration of logical functions in [14].

3.1 Deficient variable instances

Given two states (sN , sF ) respectively from P(A) and D(A), and
a variable v, we note L

`
sN(v), sF (v)

´
the measure of the common

ground of v’s value in each state. We say that variables whose in-
stances in a pair of nominal/faulty states have less common ground
than observable variables that discriminate between these two states,
are deficient. We write that v is deficient if:

L
`
sN(v), sF (v)

´
≤ max

y∈Ymisb

L
`
sN(y), sF (y)

´
(1)

where nbr(Ymisb) is the number of misbehaving observed variables.
A misbehaving y is an observed variable that is reponsible for the
fault detection, thus discriminating sN from sF : y’s value in sF bet-
ter fits ỹ than its value in sN . When relation (1) is satisfied, we say

5 Flows > 0 are abstracted from their real values for an improved readability.



L
`
sN (v), sF (v)

´
is deficient. The expression of L and the misbe-

having variables depend on the nature of the variables and the for-
malization of the uncertainty in the model.

In the case variable domains are discrete, as in [16], variable in-
stances have attached boolean labels. Misbehaving variables are ob-
servables labeled 1 in sN and 0 in sF . We set up L

`
sN (v), sF (v)

´
=

1−
`
lab(sN(v))−lab(sF (v)

´
, where lab returns the label of a given

instance. This case also applies to the measure of mode deficiencies.
In case variable instances are numerical intervals, as in [2], a mis-

behaving observed variable y is such that sN (y) ∩ ỹ = ∅. We use
L

`
sN (v), sF (v)

´
= sN(v) ∩ sF (v).

In case a variable estimate is represented with a Gaussian, as in
[9], we say y is misbehaving if p(ỹ | sF )p

`
T (sN , sF )

´
≥ p(ỹ |

sN), i.e. if its likelihood is higher in the diagnosed estimate than
in the nominally predicted one, given the probability of changing
mode. Here p

`
T (sN , sF )

´
= p

`
sN (φ1, · · · , φr)

´ Q
i=1,··· ,r p(τi)

where r is the number of components, transiting from sN to sF .
Given that sN ∼ N (mN , θN) and sF ∼ N (mF , θF ), we define
L as the measure of the common space enclosed by both density
functions fN , fF . There exist several ways to assess for this value,
one common measure is the Kullback-Leibler divergence.

3.2 Functional Deficiencies

Based on deficient variables, we can build the functional deficiencies.

Definition 2 (Functional deficiency). A functional deficiency F
for a model-based system A over a set of hybrid states S =`
P(A),D(A)

´
is a set of variable instances of M ∪ X that hold in

some states of P(A), and that are deficient in some states of D(A).
We denote as S(F ) ∈ S the reconfiguration set associated to F ,
SN (F ) and SF (F ) the corresponding sets of nominal and faulty
states in S(F ), respectively; i.e. S(F ) = (SN (F ), SF (F )).

We write F as a conjunction of nm mode instances and nc probabi-
lized value instances, nm + nc = n, as follows:

F =
^

k=1,··· ,nm

Ck.mhk
^

j=1,··· ,nc

` X

i=1,··· ,p

p(si
N)si

N (vj)
´

(2)

Then (si
N , sl

F ) ∈ S(F ) iff: L
`
si

N (Ck.mhk), sl
F (Ck.mhk)

´
and

L
`
si

N (vj), sl
F (vj)

´
are deficient for all i, j, k, l. In other words,

S(F ) includes all nominal and faulty states whose pairs show a de-
ficiency for all the instances of F . F is said to be complete w.r.t. a
reconfiguration set S′ iff S′ = S(F ). The complete F over S is
unique.

Property 1. If F , F ′ are complete functional deficiencies, then if
F ′ ⊆ F , S(F ) ⊆ S(F ′).

Proof. If F ′ ⊆ F , then S(F ′) contains at least all states of S(F )
as these show deficiencies for all instances of F , plus potential states
that do not show deficiencies for instances in F � F ′.

Property 2. If F , F ′ are complete functional deficiencies and
S(F ) = S(F ′), then F = F ′.

Proof. This comes from the uniqueness of a complete functional de-
ficiency over a given reconfiguration set S.

Given two tuples
`
F1, S(F1)

´
and

`
F2, S(F2)

´
, we write:

`
F1, S(F1)

´
∩

`
F2, S(F2)

´
=

`
F1 ∩ F2, S(F1) ∪ S(F2)

´
(3)

`
F1, S(F1)

´
∪

`
F2, S(F2)

´
=

`
F1 ∪ F2, S(F1) ∩ S(F2)

´
(4)

We note F1 ∩ F2, F1 ∪ F2 for short. From now on we consider a
functional deficiency to be complete when not explicitly mentioned
otherwise. Also, we sometimes write a functional deficiency as the
conjunction of its elements. The tuple

`
F, S(F )

´
is denoted a re-

configuration tuple. Finally, it is possible to prioritize6 a functional
deficiency pr(F ) =

Pn
i=1

Pf
j=1 p(si

N)p(sj
F ), (si

N , sj
F ) ∈ S(F ).

Definition 3 (Core functional deficiency). The core functional de-
ficiency F c has its elements satisfied in all states of P(A) and de-
ficient in all states of D(A). F c is unique for a given set S , and its
priority is equal to 1.7

Note that at least all misbehaving variables in states of S(F ) do be-
long to the core deficiency, as does Q = 0 in our example.

3.3 Minimal functionalities over maximal
reconfiguration sets

This section develops a characterization of functional deficiencies
whose size is minimal, while deficient over the largest number of
state estimates. From properties 1 and 2, the reconfiguration set in-
creases in size when the functionality decreases in size. A complete
functional deficiency of minimal size over a maximal reconfiguration
set is then easily characterized.

Definition 4 (Minimal functional deficiency over the maximal re-
configuration set). A minimal functional deficiency F has a max-
imal reconfiguration set S(F ) if it exists no other functional defi-
ciency F ′ such that S(F ) ⊂ S(F ′) and F ′ ⊂ F .

The search for minimal functional deficiencies over maximal recon-
figuration sets leads to a set of functional deficiencies denoted min-
imax. A minimax functional deficiency represents the minimum set
of variable instances that are deficient over the same maximum set of
pairs of nominal/faulty states.

Proposition 1. Given two minimax functional deficiencies F and F ′

such that F ′ ∩ F �= ∅, then S(F ′) = S(F ).

Proof. If F ′′ = F ′ ∩ F and F ′′ �= ∅, then if F ′′ ⊂ F , from defini-
tion 4 and property 1, it comes S(F ) = S(F ′′). Similarly, F ′′ ⊂ F ′

yields S(F ′′) = S(F ′), so S(F ) = S(F ′). The same result is ob-
tained if F ′′ = F or F ′′ = F ′ with property 2.

The previous proposition implicitly focuses the search on distinct
minimax functionalities. Thus functional deficiencies may be charac-
terized as disjoint sets of variable instances. This result brings flex-
ibility to the reconfiguration process under uncertainty, but is miti-
gated as the disjoint functions are not independent from each other
w.r.t. to the hybrid dynamics. In other words, they may not be recov-
ered independently. In reference to the recovery (planning) operation,
these functionalities are no serializable goals.

Proposition 2. The core functional deficiency Fc is minimax.

Proof. This is trivial from definition 4. F c is also complete with
S(F c) = S .

6 Note that in this expression, there is no notion of fault criticality. Every
faulty state is assumed to have equal criticality but the probability of the
state is taken into account.

7 Given that P(A) and D(A) have their state probabilities summing to 1.



3.4 Functional Deficiencies Computation

We note that: first, F c is minimax and easily computed, second, min-
imax deficiencies are non-intersecting, third, deficiencies over small
reconfiguration sets are larger than those over large reconfiguration
sets. Therefore a way to compute the minimax deficiency is to strip
rough non-minimax deficiencies over trivial small reconfiguration
sets from their intersection with F c. Similarly, intersections among
non-minimax deficiencies form new sets (as they cannot intersect
other sets). Algorithm 1 progressively reduces simple complete, but

1: Compute the complete F w.r.t. each reconfiguration set
(sp

N , sq
F ), compute F c, and add them all to the agenda.

2: Iterate through the tuples (Fi, Fj) in the agenda.
3: If F c ∩ Fi �= ∅, Fi ←− Fi \ {Fi ∩ F c}.
4: Else if Fi ∩ Fj �= ∅, create a new function F ′ = Fi ∩ Fj and

add it to the agenda. Do Fi ←− Fi \ F ′.
5: Else if Fi = Fj , S(Fi) = S(Fi) ∪ S(Fj) and remove the re-

maining function Fj from the agenda.
6: Fi is minimax when it does not intersect with other functions

anymore. It is removed to the agenda and returned.

Algorithm 1: Computing minimax functional deficiencies

non minimax deficiencies. Its first step updates the deficiencies for
each combination of two states of S using the measure of relation
(1), and computes the core function. Iterating through this set, step
3 prunes out a deficiency of its intersection with Fc. Step 4 prunes
out intersecting deficiencies of their intersection and creates a new
deficiency from it. Step 5 merges the reconfiguration sets of similar
deficiencies. The algorithm is better understood by developing our
example. Step 1 gives:

s1
N , s1

F : F1 = (V1.m = open) ∧ Q1 > 0 ∧ Q > 0

s
1
N , s

2
F : F2 = P0 < P

∗ ∧ (S.m = open)

∧(V2.m = closed) ∧ Q1 > 0 ∧ Q > 0

∧(V1.m = open)

s1
N , s3

F : F3 = P0 < P∗ ∧ (S.m = open)

∧Q1 > 0 ∧ Q > 0 ∧ (V1.m = open)

s2
N , s1

F : F4 = P0 ≥ P∗ ∧ (S.m = closed)

∧(V1.m = open) ∧ (V2.m = open)

∧Q1 > 0 ∧ Q2 > 0 ∧ Q > 0

s2
N , s2

F : F5 = (V1.m = open) ∧ (V2.m = open)

∧Q1 > 0 ∧ Q2 > 0 ∧ Q > 0

s2
N , s3

F : F6 = (S.m = closed) ∧ (V1.m = open)

∧Q1 > 0 ∧ Q2 > 0 ∧ Q > 0

∧(V2.m = open)

s
1
N , s

2
N , s

1
F , s

2
F , s

3
F : F

c
= (V1.m = open) ∧ Q1 > 0 ∧ Q > 0

We have F1 = F c so F1 can be eliminated. Then reducing other
functions with F c:

F2 = P0 < P∗ ∧ (S.m = open) ∧ (V2.m = closed)

F3 = P0 < P∗ ∧ (S.m = open)

F4 = P0 ≥ P
∗ ∧ (S.m = closed) ∧ (V2.m = open) ∧ Q2 > 0

F5 = (V2.m = open) ∧ Q2 > 0

F6 = (S.m = closed) ∧ Q2 > 0 ∧ (V2.m = open)

1. F2 ∩ F3 = P0 < P ∗ ∧ (S.m = open), F7 ←− P0 <
P ∗ ∧ (S.m = open), S(F7) = (s1

N ; s2
F , s3

F ), F2 = F2 \ F7 =
(V2.m = closed), S(F2) = (s1

N ; s2
F ). F7 is added to the agenda.

2. F2 ∩ F4 = ∅, F2 ∩ F5 = ∅, F2 ∩ F6 = ∅, and F2 = V2.m =
closed is minimax.

3. F3 ∩ F4 = ∅, F3 ∩ F5 = ∅, F3 ∩ F6 = ∅, F3 = F7, remove
F7, S(F3) = (s1

N ; s2
F , s3

F ). F3 = P0 < P ∗ ∧ (S.m = open) is
minimax.

4. F4 ∩ F5 = F5, F4 ←− F4 \ F5 = P0 ≥ P ∗ ∧ (S.m = closed),
S(F4) = (s2

N ; s1
F ). S(F 5) = (s2

N ; s1
F , s2

F ).
5. F4 ∩ F6 = (S.m = closed), F8 = (S.m = closed), S(F8) =

(s2
N ; s1

F , s3
F ), F4 ←− F4 \ F8 = P0 ≥ P ∗, S(F4) = (s2

N ; s1
F ),

and F4 is minimax.
6. F6 ∩ F5 = F5, F6 ←− F6 \ F5 = F8. Remove F8, F6 =

(S.m = closed), S(F6) = (s2
N ; s1

F , s3
F ). F5, F6 are minimax.

S(F 5) = (s2
N ; s1

F , s2
F , s3

F ).

Finally, the minimax functions are:

F c = (V1.m = open) ∧ Q1 > 0 ∧ Q > 0 , S(F c) = (s1
N , s2

N ; s1
F , s2

F , s3
F )

F2 = (V2.m = closed) , S(F2) = (s
1
N ; s

2
F )

F3 = P0 < P∗ ∧ (S.m = open) , S(F3) = (s1
N ; s2

F , s3
F )

F4 = P0 ≥ P∗ , S(F4) = (s2
N ; s1

F )

F5 = (V2.m = open) ∧ Q2 > 0 , S(F5) = (s2
N ; s1

F , s2
F , s3

F )

F6 = (S.m = closed) , S(F6) = (s
2
N ; s

1
F , s

3
F )

We distinguish the continuous reduction of Fi, that is its reduction to
variables in X , from the hybrid deficiency (made of both discrete and
continuous instances). Intuitively, as the modes are relaxed, there ex-
ist more states that satisfy the continuous reduction to a deficiency,
than the hybrid deficiency. For this reason, we say the latter leads
to reset solutions (as modes deficiencies are explicitly set up to be
recovered), as opposed to redundancy solutions (modes are unspeci-
fied, several component modes may recover the continuous deficien-
cies). We note F̄ the continuous reduction to F .

4 Reconfiguration of Functional Deficiencies

Previous works in MBReconf have shown how to deduce goal
states from discrete configuration goals generated by a high level
planner [16] and to recover them [17]. These techniques do not scale
well to systems with continuous state and behavior: first, the space
to be explored is no more finite; second, no bijective mapping ex-
ists between continuous variable instances and a mode. Reachability
analysis [7] searches for the set of hybrid states that can be reached
from a set of initial conditions. Extensions include techniques for the
automatic design of controllers under safety conditions [1]. How-
ever, these techniques are still computationally expensive. Here, we
propose to determine the goal configurations through a process sim-
ilar to the model-based diagnosis consistency approach. Indeed, re-
configuration can be viewed as the problem of identifying compo-
nents whose reconfiguration is sufficient to restore acceptable behav-
ior, when diagnosis is the problem of identifying component modes
whose abnormality is sufficient to explain observed malfunctions [5].
Besides modes, we search for the sufficient conditions over the con-
tinuous space that are required to recover a given deficiency. Such
conditions delimitate behavioral regions that we refer to as configu-
rations of the hybrid system. This strategy requires a static represen-
tation of the behavioral equations and a set of algorithms to reason
about it.

In the following, we denote as the goal functional deficiency F∗

the deficiency to be recovered. Its selection is part of the recovery
process, and is detailed at the end of this section. For now, we pick
up a simple F ∗ as F c because its priority is maximal, and it covers
all state estimates.
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Figure 2. Pressure expansion system causal-graph

4.1 Configurations identification

4.1.1 Causal-graph of influences

Reachability analysis is a time-analysis; by applying model-based
reasoning techniques we collapse this analysis at a single point
in time. Therefore a static representation of the equations in E is
needed. We use a causal representation.

Definition 5 (Causal-Graph of Influences). The causal-graph of
influences of a set of equations E is an oriented graph G = (X, I)
where the variables in X form a set of nodes xi, and I a set of arcs
among these variables.

The causal-graph is a representation of relations among variables in
E that holds at every time step.

Definition 6 (Causal Influence). A causal influence in I , Ii,j =
(xi, xj , b, φ), is a directed arc between two variables xi and xj , with
b the sign of the influence and φ its activation condition.

Influences are drawn from the implicit causality in E. Inputs are
subject to no influence. Figure 2 depicts the causal-graph of the pres-
sure expansion system. In the following we replace equations in E
with G. Note that in general some work is required to extract the
causality from static relations [15]. b = {−1, 1} stores the numer-
ical positive or (equal or negative) influence among variables. φ’s
truth value in the hybrid state determines the activation/deactivation
of the influence in the graph. Unconditioned, the influence is perma-
nently active.

Definition 7 (Configuration). A configuration for G (and by exten-
sion A) is of the form

V
i φi.

A configuration corresponds to a certain combination of activated
influences in the graph, and delimits a region of behavior of A. In
our example, V1.m = open ∧ V2.m = open ∧ P0 ≥ P ∗ ∧ P0 ≥
P1 ∧ P0 ≥ P2 ∧ S.m = closed is a nominal configuration of the
system.

4.1.2 Building configuration goals from functional
deficiencies

We write the MBD theory based on consistency [13] where for the
reconfiguration purpose, observations are replaced with functional
deficiencies. A deficiency F ∗ has been characterized w.r.t. the state
uncertainty. We are now searching for the minimal sets of conditions
that are sufficient to restore F ∗.

Definition 8 (Reconfiguration candidate). A reconfiguration can-
didate for A given F∗ is defined as a minimal set {I∆

1 , · · · , I∆
h } ⊆ I

of influences such that

A ∪ F ∗ ∪ ¬φ∆
1 ∪ · · · ∪ ¬φ∆

h (5)

is consistent. We note a condidate ∆ = {φ∆
1 , · · · , φ∆

h }.

Definition 9 (Reconfiguration conflict). A reconfiguration conflict
for A given F ∗ is a set λ = {Ic

1 , · · · , Ic
k} of influences such that

A ∪ F ∗ ∪ φc
1 ∪ · · · ∪ φc

k (6)

is not consistent.

From G∪F ∗ and assuming a faulty configuration (a configuration
consistent with some state in SF (F ∗)), we seek for reconfiguration
conflicts in G that are such that influences in a conflict cannot be acti-
vated together given F∗. For a deficient variable (node) xj of F ∗, we
call ascending influences the influences that belong to the paths from
the inputs/other deficient variables, to xj . An ascending influence Ii

for xj is noted λj
i = {Ii, φi}. A conflict for xj is thus the set λj

of its ascending influences {λj
i}i=1,··· ,nj . Λ =

˘
{λj}j=1,··· ,nF∗

¯

is the collection of conflicts over all deficient variables of F∗. The
set of minimal sets of influences that are responsible for the conflicts
is obtained similarly to the minimal diagnoses in the MBD theory
by computing the hitting sets (HS) over Λ [13]. Following defini-
tion (5) we note ∆q = (∧Ii∈Iqφi) where Iq is a set of influences
that must all be deactivated for restoring F∗. Consequently, we note
∆ =

˘
{∆q}q=1,··· ,nq

¯
. Sufficient conditions in ∆q are those such

that influences in Iq are all deactivated. Therefore, they are given by
¬∆q, and we note ¬∆ =

˘
{¬∆q}q=1,··· ,nq

¯
. The associated goal

configurations are given by ¬∆q ∧F ∗. A goal configuration charac-
terizes a set of goal states in which variables that are not specified in
its definition can take any value.

1: Apply F∗ to G (remove the deficiency and assume conditions
corresponding to applied variable instances to be true).

2: Apply a faulty configuration consistent with SF (F ∗) to G�F ∗.
3: Get the conflicts Λ.
4: Compute ∆ = HS(Λ).
5: ¬∆ ∧ F ∗ are goal configurations.

Algorithm 2: Identifying goal reconfiguration candidates (Goals)

Consider our example again. Reconfiguring F∗ = F c with algo-
rithm 2 implies φ1 is satisfied (step 1), and based on remaining vari-
able instances in states in SF (F ∗) the configuration of the subgraph
G�F ∗ (G deprived of nodes and axis to nodes in F∗) is determined,
in that case ¬φ2 is satisfied (V2 is closed or stuck closed in all faulty
states) (step 2)8. Tracing the ascending influences in G, it comes two
sets of conflicts (one per continuous variable instance in F∗):(

λQ = {Q ← Q1, Q ← Q2, Q2
¬φ2← 0, P2 ← Patm}

λQ1 = {Q1
φ1← P0 , Q1

φ1← P1 , P1 ← Patm}

φ1 is satisfied in F c, and influences over Q, P1 and P2 are activated
in all configurations, so it simplifies to:

(
λQ = {Q2

¬φ2← 0}
λQ1 = {} , Λ = {λQ, λQ1}

8 Some discrete values and conditions may be undetermined, then several
initial configurations must be considered. We take the probabilized mean
for continuous values.



It comes ∆ =
˘
{¬φ2}

¯
and φ2 ∧ F c is a goal configuration (step

5). Reconfiguring the continuous reduction F̄ c leads to more oppor-

tunities: φ1 is no more satisfied and λQ1 = {Q1
¬φ1←}, thus ∆ =

{{¬φ1, ¬φ2}} and configuration goals are given by φ1 ∧ φ2 ∧ F̄ c.

4.2 Recovery

In this subsection we sketch our future strategy for the recovery of
the configuration goals. The recovery operation aims at bringing the
system into the regions defined by the configuration goals. Due to
the hybrid dynamics, a solution is a chain of transitions to the com-
ponent mode goals, while the continuous dynamics ensure the tran-
sition guards are successively satisfied.

The search for the right succession of transitions defines a proba-
bilistic conformant planning problem [10], where a set of transitions
must bring the system to a set of predetermined goals, under uncer-
tainty and without observing the system full state. The plan max-
imizes the probability of reaching the goal configuration given the
initial belief state D(A). In our example, a stuck valve cannot be re-
opened, so no plan exists to restore deficiencies Fc and F̄ c. A plan
exists to restore F5 for some of the initial states, P l = {τ3, τ21}. F6

has a plan P l = {τ3}.
Satisfying successive transition guards φj through system inputs

defines a control problem. A model predictive control (MPC) ap-
proach solves on-line a finite horizon open-loop optimal control
problem subject to system dynamics and constraints involving states
and controls. Based on measurements obtained at time k, the future
dynamic behavior of the system is predicted over a fixed horizon,
and the controller determines the input such that a performance cri-
terion is optimized. This technique fits well within the model-based
autonomous system framework, given that two key elements are al-
ready present, the model A, and the state predictor (or estimator)
P(A).

Solving this control problem for complex system however requires
more research. The MPC community itself seeks for better integra-
tion of modern state estimation techniques within the control loop
[11]. We are currently working on an interleaved planning and con-
trol scheme as an extension to existing optimal control methods for
hybrid systems [4].

Our general strategy to the reconfiguration of the functional de-
ficiencies explores reset solutions first, then redundancy solutions
(continuous reductions) in prioritized order. In case of plan failure
the next deficiency is selected (see algorithm 3). In our example, s2F

1: Compute functional deficiencies with algorithm 1
2: Identify goal configurations with algorithm 2.
3: Find a plan, in case of failure move to the next deficiency, in

prioritized order.
4: Apply MPC using P(A) as the predictor.

Algorithm 3: Prioritized selection of functional deficiencies

and s3
F have much lower probability than s1

F as they correspond to
multiple faults. F c is subject to plan failure. F6: S.m = closed is its
own goal configuration and has a plan τ3 whose guard is P0 ≥ P ∗.
MPC generates the pressure input P0 to reach P ∗. Note that depend-
ing on the real initial state, the reconfiguration may have no effect.
The operation does not harm the system as we consider that maintain-
ing a nominal level of pressure does not harm even the faulty system.
Besides, it helps to discriminate among the estimates: for example, if
reconfiguring F6 fails, s1

F , and potentially s2
F are eliminated.

5 Summary, Existing works and Perspectives

We have presented a methodology for the automated reconfiguration
of functional deficiencies. The deficiencies are identified by com-
paring predicted and diagnosed states, and then partitioned and pri-
oritized w.r.t. the belief over the state estimates. Goals are further
identified from the deficiencies without proceeding to a reachability
analysis.

A pioneer work, [5], explores the analogy between the problems of
diagnosis and reconfiguration. Goal identification and safe planning
have been studied in [17] in the case of qualitative models. We are
not aware of any work on the planning of hybrid systems.

Finally, it appears that restoring a single minimax deficiency does
not restore a fully nominal state: an alternate strategy would be to
combine the deficiencies so to restore a single nominal state instead.
In a near future, we will better experiment the recovery process and
study its relation to hybrid system control.
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